The goal of constrained multiobjective evolutionary optimization is to obtain a set of well-converged and welldistributed feasible solutions. To complete this goal, there should be a tradeoff among feasibility, diversity, and convergence. However, it is nontrivial to balance these three elements simultaneously by using a single tradeoff model since the importance of each element varies in different evolutionary phases. As an alternative, we adapt different tradeoff models in different phases and propose a novel algorithm called ATM-R. In the infeasible phase, ATM-R takes the tradeoff between diversity and feasibility into account, aiming to move the population toward feasible regions from diverse search directions. In the semi-feasible phase, ATM-R promotes the transition from "the tradeoff between feasibility and diversity" to "the tradeoff between diversity and convergence", which can facilitate the discovering of enough feasible regions and speed up the search for the feasible Pareto optima in succession. In the feasible phase, the tradeoff between diversity and convergence is considered to attain a set of well-converged and well-distributed feasible solutions. It is worth noting that the merits of reference points are leveraged in ATM-R to accomplish these tradeoff models. Also, in ATM-R, a multiphase mating selection strategy is developed to generate promising solutions beneficial to different evolutionary phases. Systemic experiments on a wide range of benchmark test functions demonstrate that ATM-R is effective and competitive, compared against five state-of-the-art constrained multiobjective optimization evolutionary algorithms.


翻译:受限制的多目标进化优化的目标是获得一套周密和分配良好的可行解决办法。为了完成这一目标,在可行性、多样性和趋同之间应有权衡取舍。然而,由于每个要素的重要性在不同进化阶段各不相同,因此使用单一权衡模式来同时平衡这三个要素并非两码事,因为每个要素的重要性在不同进化阶段各不相同。作为一种替代办法,我们在不同阶段调整不同的权衡模式,并提出称为ATM-R的新奇算法。在不可行的阶段,ATM-R将多样性和可行性之间的权衡取舍考虑在内,目的是将人口从不同的搜索方向转移到可行的区域。在半可行的阶段,ATM-R促进从“可行性和多样性之间的权衡取舍”到“多样性和趋同之间的权衡取舍”的过渡,这可以促进发现足够可行的区域,并加速寻找可行的Paretoopima 。在可行的阶段,多样性和趋和趋同之间的权衡取舍是一套完全一致和完全分散的可行的解决办法。值得注意的是,在半可行的阶段,ATM-R促进从“可行性的进化和多样化的进化阶段”选择战略的优点,在不同的进进进进取的进进进进进的进进的进进进取的进进进进进进进进进进取的进进进进进的进的进进进进进进进进进的进进进进进进进进进进进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进的进进进进进进进的进的进的进的进进进进进进进的进的进的进的进的进进的进的进的进的进的进的进的进的进的进的进的进

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年3月3日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员