We present a wait-free algorithm for proper coloring the n nodes of the asynchronous cycle $C_n$, where each crash-prone node starts with its (unique) identifier as input. The algorithm is independent of $n \geq 3$, and runs in $\mathrm{O}(\log^* n)$ rounds in $C_n$. This round-complexity is optimal thanks to a known matching lower bound, which applies even to synchronous (failure-free) executions. The range of colors used by our algorithm, namely $\{0, ..., 4\}$, is optimal too, thanks to a known lower bound on the minimum number of names for which renaming is solvable wait-free in shared-memory systems, whenever $n$ is a power of a prime. Indeed, our model coincides with the shared-memory model whenever $n = 3$, and the minimum number of names for which renaming is possible in 3-process shared-memory systems is 5.
翻译:我们推出一种无等待的算法, 用于正确颜色的无同步周期的n节点 $C_ n$, 每个易崩溃节点以其( unique) 识别符号作为输入开始。 该算法独立于$\ geq 3$, 以$mterm{O} (\log ⁇ n) 以$C_ n$运行。 这个圆复数是最佳的, 因为它是一个已知的匹配比对更低的约束, 甚至适用于同步( 无故障)处决。 我们的算法所使用的颜色范围, 即$_0,..., 4 ⁇ $, 也是最理想的, 因为在共享模式中, 只要$n是质的能量, 我们的模型就会与共享模式相吻合, 只要$=3美元, 3 进程共享系统中可以重新命名的最小名称数是5。