Cosmological shock waves are essential to understanding the formation of cosmological structures. To study them, scientists run computationally expensive high-resolution 3D hydrodynamic simulations. Interpreting the simulation results is challenging because the resulting data sets are enormous, and the shock wave surfaces are hard to separate and classify due to their complex morphologies and multiple shock fronts intersecting. We introduce a novel pipeline, Virgo, combining physical motivation, scalability, and probabilistic robustness to tackle this unsolved unsupervised classification problem. To this end, we employ kernel principal component analysis with low-rank matrix approximations to denoise data sets of shocked particles and create labeled subsets. We perform supervised classification to recover full data resolution with stochastic variational deep kernel learning. We evaluate on three state-of-the-art data sets with varying complexity and achieve good results. The proposed pipeline runs automatically, has only a few hyperparameters, and performs well on all tested data sets. Our results are promising for large-scale applications, and we highlight now enabled future scientific work.
翻译:宇宙冲击波对于理解宇宙结构的形成至关重要。 要研究它们, 科学家们可以计算出昂贵的高分辨率 3D 流体动力模拟。 解释模拟结果具有挑战性, 因为由此产生的数据集庞大, 冲击波表面由于其复杂的形态和多重冲击面交叉, 很难分离和分类。 我们引入了一个新的管道, Virgo, 结合物理动力、 缩放性和 概率性强性, 以解决这个未解决且不受监督的分类问题。 为此, 我们使用内核主元件分析, 使用低级矩阵近似于震动粒子和创建贴标签子。 我们执行监督的分类, 以便恢复完整的数据解析, 并进行细微的深内核学习。 我们对三个复杂程度不同的尖端数据集进行了评估, 并取得了良好的结果。 拟议的管道自动运行, 仅有几个超参数, 并对所有测试的数据集进行良好的表现。 我们的结果对大规模应用很有希望, 现在我们强调未来科学工作的能力。