Semi-supervised learning (SSL) has been a powerful strategy to incorporate few labels in learning better representations. In this paper, we focus on a practical scenario that one aims to apply SSL when unlabeled data may contain out-of-class samples - those that cannot have one-hot encoded labels from a closed-set of classes in label data, i.e., the unlabeled data is an open-set. Specifically, we introduce OpenCoS, a simple framework for handling this realistic semi-supervised learning scenario based upon a recent framework of self-supervised visual representation learning. We first observe that the out-of-class samples in the open-set unlabeled dataset can be identified effectively via self-supervised contrastive learning. Then, OpenCoS utilizes this information to overcome the failure modes in the existing state-of-the-art semi-supervised methods, by utilizing one-hot pseudo-labels and soft-labels for the identified in- and out-of-class unlabeled data, respectively. Our extensive experimental results show the effectiveness of OpenCoS under the presence of out-of-class samples, fixing up the state-of-the-art semi-supervised methods to be suitable for diverse scenarios involving open-set unlabeled data.


翻译:半监管学习( SSL) 是一个强大的策略, 将少数标签纳入到学习更好的演示中。 在本文中, 我们侧重于一个实用的假设方案, 即当未贴标签的数据可能包含类外样本时, 想要应用 SSL — — 那些无法从标签数据中一组封闭的分类中找到单热编码标签的样本, 即未贴标签的数据是开放的。 具体地说, 我们引入 OpenCOS( OpenCOS), 这是一个简单的框架, 用于根据最近一个自我监督的视觉演示学习框架处理这个现实的半监管学习方案。 我们首先观察到, 开放设置的未贴标签数据集中的类外样本可以通过自我监督对比学习来有效识别。 然后, OpenCOS 利用这些信息来克服当前最先进的半监管方法中的失败模式, 使用单位伪标签和软标签, 分别用于在类内和外部识别的无标签数据。 我们广泛的实验结果显示, 将OnCOS( OpenCOS) 的适合的版本置于不同的版本中, 。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月3日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员