The concept of dimension is essential to grasp the complexity of data. A naive approach to determine the dimension of a dataset is based on the number of attributes. More sophisticated methods derive a notion of intrinsic dimension (ID) that employs more complex feature functions, e.g., distances between data points. Yet, many of these approaches are based on empirical observations, cannot cope with the geometric character of contemporary datasets, and do lack an axiomatic foundation. A different approach was proposed by V. Pestov, who links the intrinsic dimension axiomatically to the mathematical concentration of measure phenomenon. First methods to compute this and related notions for ID were computationally intractable for large-scale real-world datasets. In the present work, we derive a computationally feasible method for determining said axiomatic ID functions. Moreover, we demonstrate how the geometric properties of complex data are accounted for in our modeling. In particular, we propose a principle way to incorporate neighborhood information, as in graph data, into the ID. This allows for new insights into common graph learning procedures, which we illustrate by experiments on the Open Graph Benchmark.


翻译:数据的复杂性要彻底理解,维数的概念是必不可少的。确定数据集的维数的一种简单方法是考虑特征的数量。更为复杂的方法则根据内在维数(ID)的概念进行,利用了更为复杂的特征函数,例如数据点之间的距离等。然而,许多这样的方法是基于经验观察的,不能处理当今数据集的几何特性,也缺乏公理基础。V. Pestov提出了一种不同的方法,将内在维数和数学测量集中现象公理联系起来。最初,计算ID和相关函数的方法在处理大规模真实数据集时是计算上不可行的。本文提出了一种计算上可行的方法来确定这种公理ID函数,并展示了如何考虑到复杂数据的几何特性。特别是,我们提出了一种将邻域信息(如图数据)纳入ID的原则方法。这允许我们对常见的图学习过程进行新的洞察,我们通过Open Graph Benchmark上的实验进行了说明。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员