This paper constructs a novel intelligent medical diagnosis system, which can realize automatic communication and breast cancer pathological image recognition. This system contains two main parts, including a pre-training chatbot called M-Chatbot and an improved neural network model of EfficientNetV2-S named EfficientNetV2-SA, in which the activation function in top layers is replaced by ACON-C. Using information retrieval mechanism, M-Chatbot instructs patients to send breast pathological image to EfficientNetV2-SA network, and then the classifier trained by transfer learning will return the diagnosis results. We verify the performance of our chatbot and classification on the extrinsic metrics and BreaKHis dataset, respectively. The task completion rate of M-Chatbot reached 63.33\%. For the BreaKHis dataset, the highest accuracy of EfficientNetV2-SA network have achieved 84.71\%. All these experimental results illustrate that the proposed model can improve the accuracy performance of image recognition and our new intelligent medical diagnosis system is successful and efficient in providing automatic diagnosis of breast cancer.
翻译:本文构筑了一个新的智能医疗诊断系统,可以实现自动通信和乳腺癌病理图象识别。该系统包括两个主要部分,包括一个叫M-Chatbot的预培训聊天室,以及一个名为 " 高效NetV2-S " 的高效NetV2-SA改进神经网络模型,其中顶层的激活功能被ACON-C所取代。M-Chatbot利用信息检索机制指示病人将乳房病理图像发送到高效NetV2-SA网络,然后通过传输学习培训的分类员将返回诊断结果。我们分别核查了我们的聊天室和外形测量仪和BreaKHis数据集分类的性能。M-Chatbot的任务完成率达到了63.33 ⁇ 。对于BreaKHis数据集来说,高效Net2-SA网络的最高精度达到了84.71 ⁇ 。所有这些实验结果都表明,拟议的模型可以提高图像识别的准确性,我们新的智能医疗诊断系统在提供乳腺癌自动诊断方面是成功和有效的。