Capturing solution near the singular point of any nonlinear SBVPs is challenging because coefficients involved in the differential equation blow up near singularities. In this article, we aim to construct a general method based on orthogonal polynomials as wavelets. We discuss multiresolution analysis for wavelets generated by orthogonal polynomials, e.g., Hermite, Legendre, Chebyshev, Laguerre, and Gegenbauer. Then we use these wavelets for solving nonlinear SBVPs. These wavelets can deal with singularities easily and efficiently. To deal with the nonlinearity, we use both Newton's quasilinearization and the Newton-Raphson method. To show the importance and accuracy of the proposed methods, we solve the Lane-Emden type of problems and compare the computed solutions with the known solutions. As the resolution is increased the computed solutions converge to exact solutions or known solutions. We observe that the proposed technique performs well on a class of Lane-Emden type BVPs. As the paper deals with singularity, non-linearity significantly and different wavelets are used to compare the results.
翻译:在任何非线性 SBVPs 的单点附近获取解决方案具有挑战性, 因为差异方程中涉及的系数会爆炸接近奇点。 在本条中, 我们的目标是构建一个基于正向多线性作为波子的一般方法。 我们讨论对正向多线性多线性生成的波子进行多分辨率分析, 例如Hermite、 Tullere、 Cheyshev、 Laguerre 和 Gegenbauer。 然后我们用这些波子解决非线性 SBVPs。 这些波子可以轻而高效地处理奇点。 为了处理非线性, 我们使用牛顿的准线性法和牛顿- Raphson 方法。 为了显示拟议方法的重要性和准确性, 我们解决了单向型问题, 并将计算出来的解决方案与已知的解决方案进行比较。 决议增加了计算解决方案与精确解决方案或已知解决方案的趋同。 我们观察到, 拟议的技术可以在 Lane- Emden 类型 BVPs 上很好地表现 。 因为纸质性交易结果与 。