Generating temporal action proposals remains a very challenging problem, where the main issue lies in predicting precise temporal proposal boundaries and reliable action confidence in long and untrimmed real-world videos. In this paper, we propose an efficient and unified framework to generate temporal action proposals named Dense Boundary Generator (DBG), which draws inspiration from boundary-sensitive methods and implements boundary classification and action completeness regression for densely distributed proposals. In particular, the DBG consists of two modules: Temporal boundary classification (TBC) and Action-aware completeness regression (ACR). The TBC aims to provide two temporal boundary confidence maps by low-level two-stream features, while the ACR is designed to generate an action completeness score map by high-level action-aware features. Moreover, we introduce a dual stream BaseNet (DSB) to encode RGB and optical flow information, which helps to capture discriminative boundary and actionness features. Extensive experiments on popular benchmarks ActivityNet-1.3 and THUMOS14 demonstrate the superiority of DBG over the state-of-the-art proposal generator (e.g., MGG and BMN). Our code will be made available upon publication.
翻译:产生时间行动提案仍是一个极具挑战性的问题,主要问题在于预测准确的时间建议边界和可靠行动信心,以及长期和未剪辑的现实世界视频。在本文件中,我们提议了一个高效和统一的框架,以产生名为Dense边界生成器(DBG)的实时行动提案,该框架从对边界敏感的方法中得到启发,对分布稠密的提案实施边界分类和行动完整性回归。特别是,DBG由两个模块组成:时间边界分类(TBC)和行动认知完整性回归(ACR)。TBC的目的是通过低层次的双流特征提供两份时间边界信任地图,而ACR旨在生成一个高层次行动觉特征的行动完整得分图。此外,我们推出一个双流数据库,以编码RGB和光学流信息,帮助捕捉歧视性的边界和行动特征。关于流行基准活动网络1.3和THUMOS14的广泛实验显示DBG优于国家提议生成器(例如,MGG和BMN),我们的代码将在出版物上公布。