A scalable and computationally efficient framework is designed to fingerprint real-world Bluetooth devices. We propose an embedding-assisted attentional framework (Mbed-ATN) suitable for fingerprinting actual Bluetooth devices. Its generalization capability is analyzed in different settings and the effect of sample length and anti-aliasing decimation is demonstrated. The embedding module serves as a dimensionality reduction unit that maps the high dimensional 3D input tensor to a 1D feature vector for further processing by the ATN module. Furthermore, unlike the prior research in this field, we closely evaluate the complexity of the model and test its fingerprinting capability with real-world Bluetooth dataset collected under a different time frame and experimental setting while being trained on another. Our study reveals a 9.17x and 65.2x lesser memory usage at a sample length of 100 kS when compared to the benchmark - GRU and Oracle models respectively. Further, the proposed Mbed-ATN showcases 16.9x fewer FLOPs and 7.5x lesser trainable parameters when compared to Oracle. Finally, we show that when subject to anti-aliasing decimation and at greater input sample lengths of 1 MS, the proposed Mbed-ATN framework results in a 5.32x higher TPR, 37.9% fewer false alarms, and 6.74x higher accuracy under the challenging real-world setting.
翻译:----
我们设计了一个可扩展且计算效率高的框架,用于指纹识别现实世界的蓝牙设备。我们提出了一种嵌入式辅助的注意力框架(Mbed-ATN),适用于指纹识别真实的蓝牙设备。我们分析了它在不同设置下的泛化能力,演示了样本长度和抗混叠抽取的效果。嵌入式模块作为降维单元,将高维的 3D 输入张量映射到 1D 特征向量,以便由 ATN 模块进一步处理。此外,与此领域中的先前研究不同,我们仔细评估了模型的复杂度,并在训练于其他数据集的情况下,在不同时间和实验设置下的真实蓝牙数据集上测试其指纹识别能力。我们的研究揭示了在样本长度为 100 kS 时,与基准 GRU 和 Oracle 模型相比,所提出的 Mbed-ATN 模型的记忆使用率分别降低了 9.17 倍和 65.2 倍。此外,所提出的 Mbed-ATN 模型的 FLOPs 减少了 16.9 倍,可训练参数减少了 7.5 倍,与 Oracle 相比。最后,我们证明了当受到抗混叠抽取影响并输入样本长度增加至 1 MS 时,所提出的 Mbed-ATN 框架在具有挑战性的真实世界环境中可导致 TPR 高达 5.32 倍,误报少 37.9%,准确率高达 6.74 倍。