Motivated by applications in polymer-based data storage, we study the problem of reconstructing a string from part of its composition multiset. We give a full description of the structure of the strings that cannot be uniquely reconstructed (up to reversal) from their multiset of all of their prefix-suffix compositions. Leveraging this description, we prove that for all $n\ge 6$, there exists a string of length $n$ that cannot be uniquely reconstructed up to reversal. Moreover, for all $n\ge 6$, we explicitly construct the set consisting of all length $n$ strings that can be uniquely reconstructed up to reversal. As a by product, we obtain that any binary string can be constructed using Dyck strings and Catalan-Bertrand strings. For any given string $\bm{s}$, we provide a method to explicitly construct the set of all strings with the same prefix-suffix composition multiset as $\bm{s}$, as well as a formula for the size of this set. As an application, we construct a composition code of maximal size. Furthermore, we construct two classes of composition codes which can respectively correct composition missing errors and mass reducing substitution errors. In addition, we raise two new problems: reconstructing a string from its composition multiset when at most a constant number of substring compositions are lost; reconstructing a string when only given its compositions of substrings of length at most $r$. For each of these setups, we give suitable codes under some conditions.
翻译:受聚合物数据存储应用的驱动, 我们研究将字符串从其构成的多设置中重建一部分字符串的问题。 我们充分描述字符串的结构, 这些字符串无法从这些字符串的多个组合中( 直至倒转) 。 利用这一描述, 我们证明对于所有 $\ge 6 美元, 都有一个长度的字符串, 无法以独特的方式重建为逆转。 此外, 对于所有 $n\ge 6 美元, 我们明确构建由所有长度的 $n 字符串组成的数据集, 能够独一地重建为逆转。 作为产品, 我们获得一个无法用 Dyck 字符串和 Catalan- Bertrand 字符串的多个组合来构建任何二进制字符串。 对于任何给定的字符串 $\\ bm{ {s} $, 我们提供一种方法来明确构建所有字符串的数据集, 与 $\\ bm{s} 多设置相同, 一样, 以及一个适合该数据集大小的公式。 作为应用程序, 我们构建一个最错误的公式, 我们可以用最错误的公式来构建一个最错误 。