We investigate the non-elementary computational complexity of a family of substructural logics without contraction. With the aid of the technique pioneered by Lazi\'c and Schmitz (2015), we show that the deducibility problem for full Lambek calculus with exchange and weakening ($\mathbf{FL}_{\mathbf{ew}}$) is not in Elementary (i.e., the class of decision problems that can be decided in time bounded by an elementary recursive function), but is in PR (i.e., the class of decision problems that can be decided in time bounded by a primitive recursive function). More precisely, we show that this problem is complete for Tower, which is a non-elementary complexity class forming a part of the fast-growing complexity hierarchy introduced by Schmitz (2016). The same complexity result holds even for deducibility in BCK-logic, i.e., the implicational fragment of $\mathbf{FL}_{\mathbf{ew}}$. We furthermore show the Tower-completeness of the provability problem for elementary affine logic, which was proved to be decidable by Dal Lago and Martini (2004).
翻译:在Lazi\'c和Schmitz(2015年)的先锋技术的帮助下,我们发现,用交换和变弱($\mathbf{FL ⁇ mathb{mathbf{wäff{ew ⁇ $)来完全的兰贝克微积分(Lambek calclules)的不易感染问题不是初级的(即可以在一个基本递归功能约束下决定的决定问题类别),而是在PR(即可以在一个原始递归函数的时限内决定问题类别)。更准确地说,我们表明,对于塔来说,这个问题已经完全解决了,这是构成Schmitz(2016年)引入的快速增长复杂等级的一部分的非基本复杂类别。同样复杂的结果甚至对于BCK-logic的可感染性也是同样。 也就是说, $mathf{FLFLLuff{math{f{f{{w@w__$$$。我们进一步表明,在原始递归结逻辑上,马丁的可实现性问题已经证明,这在2004年)的基本逻辑上是铁塔形的。