Multimodal large-scale pretraining has shown impressive performance for unstructured data including language, image, audio, and video. However, a prevalent real-world scenario involves the combination of structured data types (tabular, time-series) with unstructured data which has so far been understudied. To bridge this gap, we propose LANISTR, an attention-based framework to learn from LANguage, Image, and STRuctured data. The core of LANISTR's methodology is rooted in \textit{masking-based} training applied across both unimodal and multimodal levels. In particular, we introduce a new similarity-based multimodal masking loss that enables it to learn cross-modal relations from large-scale multimodal data with missing modalities. On two real-world datastes, MIMIC-IV (healthcare) and Amazon Product Review (retail), LANISTR demonstrates remarkable absolute improvements of 6.6\% (AUROC) and up to 14\% (accuracy) when fine-tuned on 0.1\% and 0.01\% of labeled data, respectively, compared to the state-of-the-art alternatives. Notably, these improvements are observed even in the presence of considerable missingness ratios of 35.7\% and 99.8\%, in the respective datasets.
翻译:暂无翻译