We study fairness in the context of classification where the performance is measured by the area under the curve (AUC) of the receiver operating characteristic. AUC is commonly used when both Type I (false positive) and Type II (false negative) errors are important. However, the same classifier can have significantly varying AUCs for different protected groups and, in real-world applications, it is often desirable to reduce such cross-group differences. We address the problem of how to select additional features to most greatly improve AUC for the disadvantaged group. Our results establish that the unconditional variance of features does not inform us about AUC fairness but class-conditional variance does. Using this connection, we develop a novel approach, fairAUC, based on feature augmentation (adding features) to mitigate bias between identifiable groups. We evaluate fairAUC on synthetic and real-world (COMPAS) datasets and find that it significantly improves AUC for the disadvantaged group relative to benchmarks maximizing overall AUC and minimizing bias between groups.


翻译:我们研究分类方面的公平性,根据接收器操作特性的曲线(AUC)下区域测量性能。AUC通常在类型I(假正)和类型II(假正)错误都很重要时使用,但同一分类者可以对不同受保护群体有差异的AUC,在现实世界应用中,通常有必要减少这种跨群体的差异。我们处理如何选择额外特征的问题,以便最大幅度地改善对弱势群体的AUC。我们的结果证明,无条件的特征差异并不告诉我们AUC的公平性,但等级条件差异确实。我们利用这一联系,根据特性增强(增加特征)制定新的方法,即公平AUC,以缓解可识别群体之间的偏差。我们评估合成和真实世界(COMPAS)数据集的公平性,发现它大大改进了弱势群体的AUC,以衡量整个AUC的最大化,并尽量减少群体之间的偏差。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
39+阅读 · 2021年3月26日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
118+阅读 · 2020年5月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2022年1月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员