In this work, we introduce a control variate approximation technique for low error approximate Deep Neural Network (DNN) accelerators. The control variate technique is used in Monte Carlo methods to achieve variance reduction. Our approach significantly decreases the induced error due to approximate multiplications in DNN inference, without requiring time-exhaustive retraining compared to state-of-the-art. Leveraging our control variate method, we use highly approximated multipliers to generate power-optimized DNN accelerators. Our experimental evaluation on six DNNs, for Cifar-10 and Cifar-100 datasets, demonstrates that, compared to the accurate design, our control variate approximation achieves same performance and 24% power reduction for a merely 0.16% accuracy loss.
翻译:在这项工作中,我们引入了低误差近似深神经网络加速器的控制变差近似技术。 控制变异技术在蒙特卡洛方法中使用, 以降低差异。 我们的方法大大降低了DNN推力的倍增率导致的误差, 与最新技术相比, 不需要完全时间的再培训。 利用我们的控制变异方法, 我们使用非常近似的乘数来生成电源优化的 DNN加速器。 我们对Cifar- 10 和 Cifar- 100 数据集的6 DNS的实验性评估表明,与精确设计相比, 我们的控制变异近率达到相同的性能, 并且为精确度损失0. 16%而减少24% 的功率。