Video summaries come in many forms, from traditional single-image thumbnails, animated thumbnails, storyboards, to trailer-like video summaries. Content creators use the summaries to display the most attractive portion of their videos; the users use them to quickly evaluate if a video is worth watching. All forms of summaries are essential to video viewers, content creators, and advertisers. Often video content management systems have to generate multiple versions of summaries that vary in duration and presentational forms. We present a framework ReconstSum that utilizes LSTM-based autoencoder architecture to extract and select a sparse subset of video frames or keyshots that optimally represent the input video in an unsupervised manner. The encoder selects a subset from the input video while the decoder seeks to reconstruct the video from the selection. The goal is to minimize the difference between the original input video and the reconstructed video. Our method is easily extendable to generate a variety of applications including static video thumbnails, animated thumbnails, storyboards and "trailer-like" highlights. We specifically study and evaluate two most popular use cases: thumbnail generation and storyboard generation. We demonstrate that our methods generate better results than the state-of-the-art techniques in both use cases.


翻译:视频摘要以多种形式出现, 从传统的单一图像缩略图、动画缩略图、故事版到拖动式视频摘要。 内容创建者使用摘要来显示其视频中最有吸引力的部分; 用户使用摘要来快速评估视频是否值得观看。 所有形式的摘要对于视频浏览者、 内容创建者和广告商至关重要。 通常视频内容管理系统必须生成不同时间和演示形式的多版摘要。 我们提出了一个框架 ReconstSum, 利用基于 LSTM 的自动编码结构来提取和选择稀有的一组视频框架或关键片, 以不受监督的方式最佳地代表输入视频。 编码器从输入视频中选择一个子片段, 而解译器则试图从选择中重建视频。 目标是尽可能缩小原始输入视频和再版视频之间的差别。 我们的方法很容易扩展, 以产生多种应用, 包括静态视频缩略图、 模拟缩略图、 故事板和“ 易变缩图” 亮图。 我们专门研究并评估了两种最流行的生成方法: 我们使用最流行的生成方法, 以及最常用的生成案例。 我们具体地使用了两个缩略图案例, 使用了两种方法, 并评估了两种方法, 都使用了两种方法。

1
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年12月19日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年3月30日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
3+阅读 · 2018年12月19日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年3月30日
Arxiv
3+阅读 · 2017年11月20日
Top
微信扫码咨询专知VIP会员