We develop a cylindrical shape decomposition (CSD) algorithm to decompose an object, a union of several tubular structures, into its semantic components. We decompose the object using its curve skeleton and restricted translational sweeps. For that, CSD partitions the curve skeleton into maximal-length sub-skeletons over an orientation cost, each sub-skeleton corresponds to a semantic component. To find the intersection of the tubular components, CSD translationally sweeps the object in decomposition intervals to identify critical points at which the shape of the object changes substantially. CSD cuts the object at critical points and assigns the same label to parts along the same sub-skeleton, thereby constructing a semantic component. The proposed method further reconstructs the acquired semantic components at the intersection of object parts using generalized cylinders. We apply CSD for segmenting axons in large 3D electron microscopy images and decomposing vascular networks and synthetic objects. We show that our proposal is robust to severe surface noise and outperforms state-of-the-art decomposition techniques in its applications.
翻译:我们开发了一种圆柱形形状分解算法,将一个物体分解,一个由多个管状结构组成的组合,分解成其语义组成部分。我们用它的曲线骨架分解该物体,并限制翻译扫瞄。为此,CSD将曲线骨架分解成最大长度的子骨骼,按方向成本计算,每个子skeleton都对应一个语义组成部分。为了找到管状组件的交叉点,CSD将物体以分解间隔进行分解,以辨辨出物体变形的临界点。CSD在临界点切除该物体,并将同一子skeleton的部件配上相同的标签,从而构建一个语义组成部分。拟议的方法进一步重建了在物体部分交汇处获得的语义组成部分,使用通用圆柱体。我们应用CSD用于将一个大型的3D电子显微镜片片分解血管网络和合成物体。我们显示我们的提案在应用中坚固的表面噪音和外形状态分解技术。