The neural mechanisms supporting flexible relational inferences, especially in novel situations, are a major focus of current research. In the complementary learning systems framework, pattern separation in the hippocampus allows rapid learning in novel environments, while slower learning in neocortex accumulates small weight changes to extract systematic structure from well-learned environments. In this work, we adapt this framework to a task from a recent fMRI experiment where novel transitive inferences must be made according to implicit relational structure. We show that computational models capturing the basic cognitive properties of these two systems can explain relational transitive inferences in both familiar and novel environments, and reproduce key phenomena observed in the fMRI experiment.
翻译:支持弹性关系推断的神经机制,特别是在新情况中,是当前研究的一个主要重点。在补充学习系统框架中,河马坎普斯的形态分离使得在新环境中能够快速学习,而新皮层的缓慢学习则积累了小的重量变化,以便从深层环境中抽取系统结构。在这项工作中,我们将这一框架调整到最近的FMRI实验中的一项任务,即必须根据隐含的关系结构进行新的中转推理。我们表明,计算模型能够捕捉这两个系统的基本认知特性,可以解释熟悉和新环境中的关联过渡推论,并复制FMRI实验中观察到的关键现象。