This work investigates the problem of learning temporal interaction networks. A temporal interaction network consists of a series of chronological interactions between users and items. Previous methods tackle this problem by using different variants of recurrent neural networks to model sequential interactions, which fail to consider the structural information of temporal interaction networks and inevitably lead to sub-optimal results. To this end, we propose a novel Deep Structural Point Process termed as DSPP for learning temporal interaction networks. DSPP simultaneously incorporates the topological structure and long-range dependency structure into our intensity function to enhance model expressiveness. To be specific, by using the topological structure as a strong prior, we first design a topological fusion encoder to obtain node embeddings. An attentive shift encoder is then developed to learn the long-range dependency structure between users and items in continuous time. The proposed two modules enable our model to capture the user-item correlation and dynamic influence in temporal interaction networks. DSPP is evaluated on three real-world datasets for both tasks of item prediction and time prediction. Extensive experiments demonstrate that our model achieves consistent and significant improvements over state-of-the-art baselines.
翻译:这项工作调查了学习时间互动网络的问题。 时间互动网络由一系列用户和项目之间按时间顺序进行的互动组成。 以往的方法通过使用不同变异的经常性神经网络来模拟顺序互动来解决这个问题, 这些变异的神经网络没有考虑到时间互动网络的结构信息, 并且不可避免地导致亚最佳结果。 为此, 我们提议了一个名为 DSPP 的新型深层结构点进程, 用于学习时间互动网络。 DSPP 将地形结构和长距离依赖性结构同时纳入我们的强度功能, 以加强模型的表达性。 具体地说, 我们首先设计了一个表层结构, 以获得节点嵌嵌入。 然后开发了一个专注的转换编码器, 以学习用户和项目之间的长期依赖性结构 。 拟议的两个模块使我们得以在时间互动网络中捕捉用户- 项目的相关性和动态影响。 DSPP 在三个真实世界数据集上对项目预测和时间预测两个任务进行了评估。 广泛的实验表明, 我们的模型在状态基线上取得了一致和显著的改进。