Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial values for all parameters of the used camera model. This might occur because a simpler projection model is assumed in an initial step, or a poor initial guess for the internal parameters is pre-defined. A lot of the difficulties of general camera calibration lie in the use of a forward projection model. We side-step these challenges by first proposing a solver to calibrate the parameters in terms of a back-projection model and then regress the parameters for a target forward model. These steps are incorporated in a robust estimation framework to cope with outlying detections. Extensive experiments demonstrate that our approach is very reliable and returns the most accurate calibration parameters as measured on the downstream task of absolute pose estimation on test sets. The code is released at https://github.com/ylochman/babelcalib.
翻译:现有的大型视场摄影机校准方法有时会失败,因为根本问题没有线性,而且使用过的摄影机模型的所有参数都缺乏良好的初始值。这可能是因为最初阶段假设了一个更简单的投影模型,或者内部参数最初的猜测不预设。一般摄影机校准的许多困难在于使用前方投影模型。我们先提出一个求解器,用回射模型校准参数,然后将目标前方模型的参数反射,从而回避这些挑战。这些步骤被纳入一个强有力的估计框架,以应对外围探测。广泛的实验表明,我们的方法非常可靠,并返回根据测试组绝对表面估计的下游任务所测量的最准确的校准参数。代码在https://github.com/ylochman/babelcalib发布。