Multi-scale biomedical knowledge networks are expanding with emerging experimental technologies that generates multi-scale biomedical big data. Link prediction is increasingly used especially in bipartite biomedical networks to identify hidden biological interactions and relationshipts between key entities such as compounds, targets, gene and diseases. We propose a Graph Neural Networks (GNN) method, namely Graph Pair based Link Prediction model (GPLP), for predicting biomedical network links simply based on their topological interaction information. In GPLP, 1-hop subgraphs extracted from known network interaction matrix is learnt to predict missing links. To evaluate our method, three heterogeneous biomedical networks were used, i.e. Drug-Target Interaction network (DTI), Compound-Protein Interaction network (CPI) from NIH Tox21, and Compound-Virus Inhibition network (CVI). Our proposed GPLP method significantly outperforms over the state-of-the-art baselines. In addition, different network incompleteness is analysed with our devised protocol, and we also design an effective approach to improve the model robustness towards incomplete networks. Our method demonstrates the potential applications in other biomedical networks.


翻译:多规模生物医学知识网络正在随着产生多规模生物医学大数据的新兴实验技术而扩大; 特别是在双方生物医学网络中越来越多地使用链接预测,以查明化合物、目标、基因和疾病等关键实体之间的隐蔽生物互动和关系; 我们提议了一个图形神经网络(GNN)方法,即光基于光谱的链接预测模型(GPLP),仅以其表面相互作用信息为基础预测生物医学网络联系; 在GPLPP中,从已知网络互动矩阵中提取的1分图用于预测缺失的链接; 为了评估我们的方法,使用了三种不同生物医学网络,即:药物-目标互动网络(DTI)、来自NIH Tox21的复合-Protein互动网络(CPI)和复合-病毒干涉网络(CVI)。 我们提议的GPLP方法大大超越了最先进的基线。 此外,我们用设计的程序分析了不同的网络不完善性,我们还设计了一种有效的方法来改进模型对不完整网络的稳健性。 我们的方法展示了其他生物医学网络的潜在应用。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
6+阅读 · 2019年9月25日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Arxiv
9+阅读 · 2018年10月18日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
6+阅读 · 2019年9月25日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Arxiv
9+阅读 · 2018年10月18日
Arxiv
26+阅读 · 2018年2月27日
Top
微信扫码咨询专知VIP会员