In order to exploit representations of time-series signals, such as physiological signals, it is essential that these representations capture relevant information from the whole signal. In this work, we propose to use a Transformer-based model to process electrocardiograms (ECG) for emotion recognition. Attention mechanisms of the Transformer can be used to build contextualized representations for a signal, giving more importance to relevant parts. These representations may then be processed with a fully-connected network to predict emotions. To overcome the relatively small size of datasets with emotional labels, we employ self-supervised learning. We gathered several ECG datasets with no labels of emotion to pre-train our model, which we then fine-tuned for emotion recognition on the AMIGOS dataset. We show that our approach reaches state-of-the-art performances for emotion recognition using ECG signals on AMIGOS. More generally, our experiments show that transformers and pre-training are promising strategies for emotion recognition with physiological signals.
翻译:为了利用时间序列信号(如生理信号)的表述方式,这些表述方式必须从整个信号中获取相关信息。在这项工作中,我们提议使用基于变压器的模型来处理心电图以引起情感识别。可以使用变压器的注意机制为信号建立背景化的表达方式,更加重视相关部分。然后,这些表达方式可以使用一个完全连接的网络来处理,以预测情感。为了克服情感标签的数据集规模较小,我们采用自我监督的学习方法。我们收集了一些没有情感标签的ECG数据集,以预制我们的模型,我们随后对模型进行微调调整,以了解在AMIGS数据集上的情感识别。我们展示我们的方法达到了使用ECG信号在AMIOS上的情感识别的最先进的表现。更一般地说,我们的实验表明,变压器和预培训是用生理信号进行情感识别的有希望的战略。