项目名称: 自组装异价掺杂超薄二维纳米片增强储锂机理研究
项目编号: No.11474242
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 杨利文
作者单位: 湘潭大学
项目金额: 96万元
中文摘要: 在纳米和原子尺度揭示低维纳米材料的电化学储能和失效机理,表征超薄二维纳米材料特有的表面、尺寸、界面及其耦合效应对储能性质的影响规律,是凝聚态物理、材料及电化学领域极具挑战的前沿课题之一。高性能超薄柔性储能器件方面的潜在应用使单晶面积更大、传导性能更好的超薄二维纳米材料的自组装规模化制备日益重要。本项目以非层状结构的超薄二维纳米片为研究对象,通过异价掺杂探索超薄二维纳米材料自组装可控合成新方法,改善其传导性能差的缺点,构筑高性能超薄柔性储能原型器件。基于扫描探针和微区拉曼技术组合发展电化学原位表征新技术,结合第一性原理计算和分子动力学模拟,建立凝聚态物理、材料和电化学的相互交叉渗透的理论分析体系, 从宏观-介观-微观多尺度揭示异价掺杂超薄二维纳米材料的增强储锂机理。力争在低维纳米材料储能性质的原位表征、理论分析及物理机制有所突破,最终为新型超薄二维纳米材料及储能器件的设计提供技术和理论依据。
中文关键词: 异价掺杂;二维纳米材料;自组装;能量存储
英文摘要: It is one of the most challenging frontier researches to reveal the physical origin of electrochemical energy storage and degradation at atomic- and nano-scale in low-dimensional nanomaterials, and characterize unique surface, size,interface and their coupling effect on the energy storage of ultrathin two-dimensional (2D) nanomaterials in the field of condense matter physics, materials and electrochemistry. On the other hand, it is increasingly important to prepare single-crystalline ultrathin 2D nanomaterials with bigger planar size and higher conductivity on a scale via self-assembled approach due to their potential application in high-performance ultrathin flexible energy storage devices. In this project, we will develop novel self-assembled approach to the controlled preparation of ultrathin 2D nanomaterials together the improvement of intrinsic conductivity via heterovalent doping from the results of nonlayered structure ultrathin nanosheets. Meanwhile, we will also fabricate prototype device for the characterization of improved energy storage properties. Subsequently, we will develop new in-situ technique for the evaluation and characterization of electrochemical energy storage and degradation based on the combination of scanning probe microscopy and micro-Raman spectroscopy, and integrate the results of first-principle calculation and molecular dynamic simulation to establish theoretically analysis system in which the condense matter physics, materials and electrochemistry mutually cross and seep, thereby unveiling the physical mechanism of enhanced lithium storage of the ultrathin nanosheets with heterovalent doping at micro-meso-macro multiscale. We will strive for breakthrough in the in-situ characterization, theoretical analysis and physical mechanism of electrochemical energy storage in low-dimensional nanomaterials and our results are expected to provide scientific basis for the construction of novel ultrathin 2D nanomaterials and next-generation energy storage devices.
英文关键词: Heterovalent doping;Two-dimensional ultrathin nanosheets;Self-assembly;Energy Storage