In this paper, we propose a multi-speaker face-to-speech waveform generation model that also works for unseen speaker conditions. Using a generative adversarial network (GAN) with linguistic and speaker characteristic features as auxiliary conditions, our method directly converts face images into speech waveforms under an end-to-end training framework. The linguistic features are extracted from lip movements using a lip-reading model, and the speaker characteristic features are predicted from face images using cross-modal learning with a pre-trained acoustic model. Since these two features are uncorrelated and controlled independently, we can flexibly synthesize speech waveforms whose speaker characteristics vary depending on the input face images. We show the superiority of our proposed model over conventional methods in terms of objective and subjective evaluation results. Specifically, we evaluate the performances of linguistic features by measuring their accuracy on an automatic speech recognition task. In addition, we estimate speaker and gender similarity for multi-speaker and unseen conditions, respectively. We also evaluate the aturalness of the synthesized speech waveforms using a mean opinion score (MOS) test and non-intrusive objective speech quality assessment (NISQA).The demo samples of the proposed and other models are available at https://sam-0927.github.io/


翻译:在本文中,我们提出一个多讲方对讲方波形生成模型,该模型也适用于隐蔽的演讲者条件。使用具有语言和发言特点作为辅助条件的基因对抗网络(GAN),我们的方法在端对端培训框架内直接将脸部图像转换成语音波形。语言特征通过唇读模型从嘴唇运动中提取,发言者特征通过使用经过预先训练的声学模型从面部图像中预测。由于这两个特征不相干,而且独立控制,我们可以灵活合成语音波形,其发言者特点因输入面像而不同。我们用客观和主观评价结果来显示我们所提议的模式优于传统方法。具体地说,我们通过测量语言特征在自动语音识别任务的准确性来评估语言特征的性能。此外,我们分别用经过预先训练的声学模型和看不见的声学模型来估计演讲者和性别相似性。我们还利用平均意见分(MOS)测试和非侵入性客观语言质量模型来评估综合语音波形形形形形形形形形形形色。在 MAS-Q 和A/DROB-A/A/A/ADMs/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A///////////////////////////////////A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/////A/A/

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
25+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年12月20日
Arxiv
0+阅读 · 2022年12月19日
Arxiv
33+阅读 · 2022年2月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员