The cold-start problem is a long-standing challenge in recommender systems due to the lack of user-item interactions, which significantly hurts the recommendation effect over new users and items. Recently, meta-learning based methods attempt to learn globally shared prior knowledge across all users, which can be rapidly adapted to new users and items with very few interactions. Though with significant performance improvement, the globally shared parameter may lead to local optimum. Besides, they are oblivious to the inherent information and feature interactions existing in the new users and items, which are critical in cold-start scenarios. In this paper, we propose a Task aligned Meta-learning based Augmented Graph (TMAG) to address cold-start recommendation. Specifically, a fine-grained task aligned constructor is proposed to cluster similar users and divide tasks for meta-learning, enabling consistent optimization direction. Besides, an augmented graph neural network with two graph enhanced approaches is designed to alleviate data sparsity and capture the high-order user-item interactions. We validate our approach on three real-world datasets in various cold-start scenarios, showing the superiority of TMAG over state-of-the-art methods for cold-start recommendation.
翻译:冷启动问题是建议系统的长期挑战,原因是缺乏用户-项目互动,这大大损害了对新用户和新项目的建议效果。最近,基于元学习的方法试图在所有用户中学习全球共享的先前知识,这些知识可以迅速适应新的用户和很少互动的项目。虽然随着业绩的显著改善,全球共享参数可能实现地方最佳化。此外,它们忽视了新用户和项目中存在的内在信息和特征互动,这些在冷启动情景中至关重要。在本文中,我们建议采用一个与任务一致的基于元学习的强化图表(TMAG),以解决冷启动建议。具体地说,建议对类似用户进行精细重的任务调整组合,将任务区分为元学习任务,以便提供一致的优化方向。此外,一个配有两种图形强化方法的强化图形神经网络旨在减轻数据散落度并捕捉到高阶用户-项目互动。我们验证了我们在各种冷启动情景中的三个真实世界数据集上的做法,显示TMAG优于州式冷启动建议的方法。