In the author's PhD thesis (2019) universal envelopes were introduced as a tool for studying the continuously obtainable information on discontinuous functions. To any function $f \colon X \to Y$ between $\operatorname{qcb}_0$-spaces one can assign a so-called universal envelope which, in a well-defined sense, encodes all continuously obtainable information on the function. A universal envelope consists of two continuous functions $F \colon X \to L$ and $\xi_L \colon Y \to L$ with values in a $\Sigma$-split injective space $L$. Any continuous function with values in an injective space whose composition with the original function is again continuous factors through the universal envelope. However, it is not possible in general to uniformly compute this factorisation. In this paper we propose the notion of uniform envelopes. A uniform envelope is additionally endowed with a map $u_L \colon L \to \mathcal{O}^2(Y)$ that is compatible with the multiplication of the double powerspace monad $\mathcal{O}^2$ in a certain sense. This yields for every continuous map with values in an injective space a choice of uniformly computable extension. Under a suitable condition which we call uniform universality, this extension yields a uniformly computable solution for the above factorisation problem. Uniform envelopes can be endowed with a composition operation. We establish criteria that ensure that the composition of two uniformly universal envelopes is again uniformly universal. These criteria admit a partial converse and we provide evidence that they cannot be easily improved in general. Not every function admits a uniformly universal uniform envelope. We can however assign to every function a canonical envelope that is in some sense as close as possible to a uniform envelope. We obtain a composition theorem similar to the uniform case.


翻译:在作者的博士论文(2019年)中,通用信封被引入为一种工具,用于研究持续获得的关于不连续函数的信息。对于在$\operatorname{qcb ⁇ 0$-space之间的任何函数, $\col X\toY$至Y$, 您可以指定一个所谓的通用信封, 在定义明确的意义上, 该信封可以编码所有关于该函数的可连续获取的信息。 一个通用信封包含两个连续的函数 $F\ colone X\to L$和$\xxxxxi_L\lcoloral Y\ to l$, 其值以$\Sgmaxxxxlal- spitive space exprolity $lity $lupal $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月7日
Arxiv
0+阅读 · 2022年7月7日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员