High-dimensional models often have a large memory footprint and must be quantized after training before being deployed on resource-constrained edge devices for inference tasks. In this work, we develop an information-theoretic framework for the problem of quantizing a linear regressor learned from training data $(\mathbf{X}, \mathbf{y})$, for some underlying statistical relationship $\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \mathbf{v}$. The learned model, which is an estimate of the latent parameter $\boldsymbol{\theta} \in \mathbb{R}^d$, is constrained to be representable using only $Bd$ bits, where $B \in (0, \infty)$ is a pre-specified budget and $d$ is the dimension. We derive an information-theoretic lower bound for the minimax risk under this setting and propose a matching upper bound using randomized embedding-based algorithms which is tight up to constant factors. The lower and upper bounds together characterize the minimum threshold bit-budget required to achieve a performance risk comparable to the unquantized setting. We also propose randomized Hadamard embeddings that are computationally efficient and are optimal up to a mild logarithmic factor of the lower bound. Our model quantization strategy can be generalized and we show its efficacy by extending the method and upper-bounds to two-layer ReLU neural networks for non-linear regression. Numerical simulations show the improved performance of our proposed scheme as well as its closeness to the lower bound.
翻译:高维模型通常具有很大的内存足迹, 必须在培训后进行量化, 然后再在资源限制的边缘设备上部署用于推断任务。 在这项工作中, 我们为从培训数据$( mathbf{X},\ mathbf{{y}) 中学习的线性回归器问题开发了一个信息理论框架 。 对于某些基本统计关系 $\ mathbf{y} =\ mathb{X ⁇ boldsymbol_theta} +\ mathbf{v} $。 学习的模型, 这是一种对潜值参数 $\\ boldsymbol_theta} 的问题进行量化 信息理论框架 。 仅使用 $( mathbffsb{X},\ mathbff{y} $,\ fy} (美元) 来代表 $Be- infrealtial developal ligal ligal oral ligal ligal oral oral- ligal- ladeal ladeal- ladeal- ladeal ladeal max the ladeal ladeal lautal max the modeals lautal lautals lautal lauts lauts lautal modeal lautals lautal mologal max modal modal lautal modalsaldalsal max madaldaldaldaldaldal max max max max macumentalsalsalsalsalsalsalsalsalsal madaldal, modal modal modal modal modal modal mod modals mod mod mod mod modal mod mod modal modaldaldals modaldaldaldaldals modal, mocal mo