In this paper, we describe a new algorithm to build a few sparse principal components from a given data matrix. Our approach does not explicitly create the covariance matrix of the data and can be viewed as an extension of the Kogbetliantz algorithm to build an approximate singular value decomposition for a few principal components. We show the performance of the proposed algorithm to recover sparse principal components on various datasets from the literature and perform dimensionality reduction for classification applications.
翻译:在本文中,我们描述了一种从特定数据矩阵中建立少数主要组成部分的新算法。我们的方法没有明确创建数据的共变矩阵,可视为Kogbetliantz算法的延伸,以建立几大主要组成部分的近似单值分解。我们展示了拟议算法的性能,从文献中从各种数据集中回收稀少的主要组成部分,并对分类应用进行维度分解。