Bootstrap is a principled and powerful frequentist statistical tool for uncertainty quantification. Unfortunately, standard bootstrap methods are computationally intensive due to the need of drawing a large i.i.d. bootstrap sample to approximate the ideal bootstrap distribution; this largely hinders their application in large-scale machine learning, especially deep learning problems. In this work, we propose an efficient method to explicitly \emph{optimize} a small set of high quality ``centroid'' points to better approximate the ideal bootstrap distribution. We achieve this by minimizing a simple objective function that is asymptotically equivalent to the Wasserstein distance to the ideal bootstrap distribution. This allows us to provide an accurate estimation of uncertainty with a small number of bootstrap centroids, outperforming the naive i.i.d. sampling approach. Empirically, we show that our method can boost the performance of bootstrap in a variety of applications.
翻译:不幸的是,标准的靴子捕捉方法在计算上非常密集,因为需要绘制一个大型的i.d. 靴子取样,以接近理想的靴子分布;这在很大程度上阻碍了它们在大型机器学习中的应用,特别是深层学习问题。在这项工作中,我们提出了一个有效的方法,以明确确定“centroid”一小组高品质的“centroid”点,以更好地接近理想的靴子分布。我们通过将一个与理想的靴子分布相仿的简单客观功能最小化来实现这一目标。这使我们能够以少量的靴子捕捉式机械工来准确估计不确定性,这比天真的i.d.采样方法要好。我们很生动地表明,我们的方法可以在各种应用中提高靴子的性能。