From the minimal assumption of post-quantum semi-honest oblivious transfers, we build the first $\epsilon$-simulatable two-party computation (2PC) against quantum polynomial-time (QPT) adversaries that is both constant-round and black-box (for both the construction and security reduction). A recent work by Chia, Chung, Liu, and Yamakawa (FOCS'21) shows that post-quantum 2PC with standard simulation-based security is impossible in constant rounds, unless either $\mathbf{NP} \subseteq \mathbf{BQP}$ or relying on non-black-box simulation. The $\epsilon$-simulatability we target is a relaxation of the standard simulation-based security that allows for an arbitrarily small noticeable simulation error $\epsilon$. Moreover, when quantum communication is allowed, we can further weaken the assumption to post-quantum secure one-way functions (PQ-OWFs), while maintaining the constant-round and black-box property. Our techniques also yield the following set of constant-round and black-box two-party protocols secure against QPT adversaries, only assuming black-box access to PQ-OWFs: - extractable commitments for which the extractor is also an $\epsilon$-simulator; - $\epsilon$-zero-knowledge commit-and-prove whose commit stage is extractable with $\epsilon$-simulation; - $\epsilon$-simulatable coin-flipping; - $\epsilon$-zero-knowledge arguments of knowledge for $\mathbf{NP}$ for which the knowledge extractor is also an $\epsilon$-simulator; - $\epsilon$-zero-knowledge arguments for $\mathbf{QMA}$. At the heart of the above results is a black-box extraction lemma showing how to efficiently extract secrets from QPT adversaries while disturbing their quantum state in a controllable manner, i.e., achieving $\epsilon$-simulatability of the after-extraction state of the adversary.


翻译:从后夸、钟、刘和山川(FOCS'21)的最低假设来看,以标准模拟基基安全为基础的后夸2PC不可能在固定回合中实现,除非(mathbf{NP}) 和(subset) 美元(mathbfredial-modial-modial-modial-modial-mode-modial-modial-modial-modition-modition-modial-modia-modial-modial-modition-modition-modial-modition-moudio-modireal-modia-modia-modition-moditional-modition-modition-moudiocial-mocial-mocial-mocial-mocial-mocial-mocial-mocial-mocial-motional-motional-motion-moto-moto-mocal-mocal-mocal-motional-motion-motion-motion-motion-motion-mocal-moto-moto-mocal-mocal-momotion-motion-motional-motional-motional-motional-motional-mocal-mocal-mocal-mocal-mocal-moto-moto-motomotomotost-motost-moto motost-motost-mocal-mocal-mocal-mocal-motion-motos-mo-moto moto-motion-motosts-motos-moal-sal-moto-moto-moto-moto-moto-moto-moto-moto-moto-moto-moal-mocal-motional-moal-moal-motos-motos-motos-moto-moto-moto-most-most-motos-motost,我们,我们),我们,我们,我们,我们,也只能,我们,也只能,也只能,也以固定的

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月17日
Arxiv
0+阅读 · 2022年1月14日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员