Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Matching (ActMAD): We analyze activations of the model and align activation statistics of the OOD test data to those of the training data. In contrast to existing methods, which model the distribution of entire channels in the ultimate layer of the feature extractor, we model the distribution of each feature in multiple layers across the network. This results in a more fine-grained supervision and makes ActMAD attain state of the art performance on CIFAR-100C and Imagenet-C. ActMAD is also architecture- and task-agnostic, which lets us go beyond image classification, and score 15.4% improvement over previous approaches when evaluating a KITTI-trained object detector on KITTI-Fog. Our experiments highlight that ActMAD can be applied to online adaptation in realistic scenarios, requiring little data to attain its full performance.
翻译:测试-时间培训(TTT)是一种应对分配外数据的方法,它使经过培训的模型适应测试时的分布变化。我们建议通过激活匹配(ActMAD)来进行这种调整:我们分析模型的激活,并将OOD测试数据的激活统计数据与培训数据的统计数据相匹配。与现有的方法相比,我们模拟了地物提取器最终层中整个频道的分布,我们模拟了每个特征在网络多层中的分布。这导致更精细的监管,并使ActMAD在CIFAR-100C和图像网-C上达到最新业绩水平。ActMAD也是建筑和任务分析性的,让我们超越图像分类,在评价KITTI-Fog上经过KITTI训练的物体探测器时比以前的方法改进了15.4%。我们的实验强调,AcMAD可以在现实情景下应用于在线适应,需要很少的数据才能完全实现其性能。