Overlap functions are a class of aggregation functions that measure the overlapping degree between two values. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees. The choice of a total order for intervals can be significant, which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with special attention to interval-valued aggregation functions; (ii) introduce the concept of $(a,b)$-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap functions, taking into account a function that controls the width of the output interval; (iv) present and compare three construction methods for these width-limited interval-valued overlap functions.


翻译:超重值函数是测量两个值之间重叠程度的集合功能的类别。 计算间隔值的重叠功能被定义为用于表示间隔值数据重叠的延伸, 通常在会籍度分配不确定时适用。 选择总顺序间隔时间可能很重要, 从而激发了间隔值集合函数和间隔值重叠函数方面的最新发展, 即, 使通常的偏差顺序更加精确。 此外, 考虑过最近这些工程的宽度间隔值保存, 目的是避免不确定性的增加, 保证信息质量, 但没有更深入地研究在应用间隔值函数时输入间隔时间间隔与产出间隔时间间隔时间间隔时间间隔时间间隔之间的关系, 或如何根据这种关系控制这种不确定性的传播。 因此, 在本文件中, 我们:(一) 引入并发展宽度过宽度间隔值函数和宽度限制功能的概念, 提出理论方法, 分析两重值间隔值函数的输入和产出间隔时间间隔之间的宽度关系, 特别注意间隔时间间隔时间- 定期值函数, 并特别注意间隔- 缩比值 缩缩 ; (二) 概念, 至 至 缩缩缩缩 的计算,,, 至, 至 至 至 缩 的 的 的 至 至 至 至 的 至 至 至 至 至 的 至 的 的 至 至 至 的 至 至 至 至 的 的 至 的 的 的 的 的 的 至 至 至 至 至 的 至 至 至 至 的 的 至 至 至 至 至 的 至 至 至 至 至 至 至 至 至 至 至 的 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 的 的 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Bayesian Sample Size Calculations for SMART Studies
Arxiv
0+阅读 · 2021年8月2日
Arxiv
0+阅读 · 2021年7月30日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员