Private data generated by edge devices -- from smart phones to automotive electronics -- are highly informative when aggregated but can be damaging when mishandled. A variety of solutions are being explored but have not yet won the public's trust and full backing of mobile platforms. In this work, we propose numerical aggregation protocols that empirically improve upon prior art, while providing comparable local differential privacy guarantees. Sharing a single private bit per value supports privacy metering that enable privacy controls and guarantees that are not covered by differential privacy. We put emphasis on the ease of implementation, compatibility with existing methods, and compelling empirical performance.
翻译:由边缘设备生成的私人数据 -- -- 从智能电话到汽车电子设备 -- -- 在汇总时信息量很高,但在处理不当时可能会造成损害。正在探索各种解决方案,但尚未赢得公众的信任和移动平台的充分支持。在这项工作中,我们提议了数字汇总协议,在对先前的艺术进行经验上加以改进,同时提供可比的本地差异隐私保障。每个价值共享一个私人位子支持隐私计量,从而能够实现隐私控制和保障,而隐私控制和保障并不受不同隐私保护。我们强调执行的便利性、与现有方法的兼容性以及令人信服的经验性表现。