We propose the attraction Indian buffet distribution (AIBD), a distribution for binary feature matrices influenced by pairwise similarity information. Binary feature matrices are used in Bayesian models to uncover latent variables (i.e., features) that explain observed data. The Indian buffet process (IBP) is a popular exchangeable prior distribution for latent feature matrices. In the presence of additional information, however, the exchangeability assumption is not reasonable or desirable. The AIBD can incorporate pairwise similarity information, yet it preserves many properties of the IBP, including the distribution of the total number of features. Thus, much of the interpretation and intuition that one has for the IBP directly carries over to the AIBD. A temperature parameter controls the degree to which the similarity information affects feature-sharing between observations. Unlike other nonexchangeable distributions for feature allocations, the probability mass function of the AIBD has a tractable normalizing constant, making posterior inference on hyperparameters straight-forward using standard MCMC methods. A novel posterior sampling algorithm is proposed for the IBP and the AIBD. We demonstrate the feasibility of the AIBD as a prior distribution in feature allocation models and compare the performance of competing methods in simulations and an application.
翻译:我们提出印度自助布局的吸引力分配(AIBD),这是受相近信息影响的二进制地物矩阵的分布。Bayesian模型使用二进制地物矩阵来发现解释观察到的数据的潜在变量(即特征),印度自助程序(IBP)是以前对潜在地物矩阵的流行性可交换性分布;然而,在有额外信息的情况下,互换性假设是不合理或不可取的。AIBD可以包含双向相似性信息,但它保留了IBP的许多特性,包括所有特征的分布。因此,BBP公司对IBP的许多解释和直觉都直接传到ABBD。一个温度参数控制着类似性信息影响观测之间特征共享的程度。不同于其他非互换性布局配置的分布,AIBD的概率质量函数具有可移动的常态常态,使用标准的MCM方法对超比度计直向前推论。为IBP和AIBD的模拟算法,我们比较了AIBD模型的先前性分布方式。