Tremendous progress has been made on face detection in recent years using convolutional neural networks. While many face detectors use designs designated for detecting faces, we treat face detection as a generic object detection task. We implement a face detector based on the YOLOv5 object detector and call it YOLO5Face. We make a few key modifications to the YOLOv5 and optimize it for face detection. These modifications include adding a five-point landmark regression head, using a stem block at the input of the backbone, using smaller-size kernels in the SPP, and adding a P6 output in the PAN block. We design detectors of different model sizes, from an extra-large model to achieve the best performance to a super small model for real-time detection on an embedded or mobile device. Experiment results on the WiderFace dataset show that on VGA images, our face detectors can achieve state-of-the-art performance in almost all the Easy, Medium, and Hard subsets, exceeding the more complex designated face detectors. The code is available at \url{https://github.com/deepcam-cn/yolov5-face}
翻译:近些年来,在使用进化神经网络进行面部检测方面取得了巨大的进步。许多面部探测器使用指定用于检测面部的设计,但我们将面部检测作为通用物体检测任务处理。我们根据YOLOv5天体检测器实施面部检测器,并称之为YOLO5Face。我们对YOLO5天体检测器做了几处关键修改,并优化了它以进行面部检测。这些修改包括增加一个五点里程碑级回归头,在骨干输入时使用干块,在SPP中使用较小尺寸的内核,并在SPP中添加一个P6输出。我们设计了不同型号的探测器,从一个超大模型到一个超小模型,以便在嵌入式或移动设备上实时检测。大面形图像的实验结果显示,在VGA图像上,我们的面部探测器可以在几乎所有易、中和硬子集中达到最先进的状态性能,超过指定的面部探测器。代码可在以下查阅 URlas://githubub.com/ deepcamask-deal-maskmas。