Traffic forecasting is one canonical example of spatial-temporal learning task in Intelligent Traffic System. Existing approaches capture spatial dependency with a pre-determined matrix in graph convolution neural operators. However, the explicit graph structure losses some hidden representations of relationships among nodes. Furthermore, traditional graph convolution neural operators cannot aggregate long-range nodes on the graph. To overcome these limits, we propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting. Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes. Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block. What's more, a stacked dilated 1D convolution, with efficiency in long-term prediction, is adopted in our temporal block for capturing the different time series. We evaluate our STAAN on two real-world datasets, and experiments validate that our model outperforms state-of-the-art baselines.


翻译:在智能交通系统中,交通流量预测是空间时空学习任务的一个典型例子。 现有方法在图形进化神经操作器中以预先确定的矩阵来捕捉空间依赖性。 但是, 清晰的图形结构会丢失节点之间某些隐藏的表达方式。 此外, 传统的图形进化神经操作器无法在图形上汇总长距离节点。 为了克服这些界限, 我们提议建立一个新的网络, 空间- 时空适应性图与注意网络( STAAN) 相融合, 用于交通预测。 首先, 我们采用适应性依赖性矩阵, 而不是在GCN处理过程中使用预先确定的矩阵来推断节点之间的相互依存性。 第二, 我们整合基于为全球依赖设计的图形注意网络的PW- 注意, GCN 作为空间块。 此外, 我们的时间区采用了堆叠式的1 变异式, 具有长期预测的效率, 来捕捉不同的时间序列。 我们用两个真实世界数据集来评估我们的STAAN, 并进行实验, 验证我们的模型是否超越了艺术的状态基线 。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员