Traffic forecasting is one canonical example of spatial-temporal learning task in Intelligent Traffic System. Existing approaches capture spatial dependency with a pre-determined matrix in graph convolution neural operators. However, the explicit graph structure losses some hidden representations of relationships among nodes. Furthermore, traditional graph convolution neural operators cannot aggregate long-range nodes on the graph. To overcome these limits, we propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting. Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes. Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block. What's more, a stacked dilated 1D convolution, with efficiency in long-term prediction, is adopted in our temporal block for capturing the different time series. We evaluate our STAAN on two real-world datasets, and experiments validate that our model outperforms state-of-the-art baselines.
翻译:在智能交通系统中,交通流量预测是空间时空学习任务的一个典型例子。 现有方法在图形进化神经操作器中以预先确定的矩阵来捕捉空间依赖性。 但是, 清晰的图形结构会丢失节点之间某些隐藏的表达方式。 此外, 传统的图形进化神经操作器无法在图形上汇总长距离节点。 为了克服这些界限, 我们提议建立一个新的网络, 空间- 时空适应性图与注意网络( STAAN) 相融合, 用于交通预测。 首先, 我们采用适应性依赖性矩阵, 而不是在GCN处理过程中使用预先确定的矩阵来推断节点之间的相互依存性。 第二, 我们整合基于为全球依赖设计的图形注意网络的PW- 注意, GCN 作为空间块。 此外, 我们的时间区采用了堆叠式的1 变异式, 具有长期预测的效率, 来捕捉不同的时间序列。 我们用两个真实世界数据集来评估我们的STAAN, 并进行实验, 验证我们的模型是否超越了艺术的状态基线 。