Tverberg's theorem is one of the cornerstones of discrete geometry. It states that, given a set $X$ of at least $(d+1)(r-1)+1$ points in $\mathbb R^d$, one can find a partition $X=X_1\cup \ldots \cup X_r$ of $X$, such that the convex hulls of the $X_i$, $i=1,\ldots,r$, all share a common point. In this paper, we prove a strengthening of this theorem that guarantees a partition which, in addition to the above, has the property that the boundaries of full-dimensional convex hulls have pairwise nonempty intersections. Possible generalizations and algorithmic aspects are also discussed. As a concrete application, we show that any $n$ points in the plane in general position span $\lfloor n/3\rfloor$ vertex-disjoint triangles that are pairwise crossing, meaning that their boundaries have pairwise nonempty intersections; this number is clearly best possible. A previous result of Rebollar et al.\ guarantees $\lfloor n/6\rfloor$ pairwise crossing triangles. Our result generalizes to a result about simplices in $\mathbb R^d,d\ge2$.
翻译:Tverberg 的定理是离散几何的基石之一。 它指出, 如果设定了至少( d+1)( r-1) +1 美元+1 美元点的美元, 则人们可以找到一个分区 $X= X_ 1\ cup\ eldots X_ r$ 美元, 也就是说, 美元= 1,\ ldots, 美元, 美元是离散几何的基石之一 。 在本文中, 我们证明这种保证分区的强化性能, 除了上述外, 其属性是全维锥体的边界有对齐的非空交叉点。 还可以讨论可能的概括性和算法方面 。 作为具体应用, 我们显示一般位置上的任何美元点都跨越了 $lgnd n/3\ rploople$ 的垂直分解三角点, 意味着它们的边界是相配对的 $ngrequal 交叉点; 这个数字显然可以超越我们的普通平面结果 。