In blockchains such as Bitcoin and Ethereum, users compete in a transaction fee auction to get their transactions confirmed in the next block. A line of recent works set forth the desiderata for a "dream" transaction fee mechanism (TFM), and explored whether such a mechanism existed. A dream TFM should satisfy 1) user incentive compatibility (UIC), i.e., truthful bidding should be a user's dominant strategy; 2) miner incentive compatibility (MIC), i.e., the miner's dominant strategy is to faithfully implement the prescribed mechanism; and 3) miner-user side contract proofness (SCP), i.e., no coalition of the miner and one or more user(s) can increase their joint utility by deviating from the honest behavior. The weakest form of SCP is called 1-SCP, where we only aim to provide resilience against the collusion of the miner and a single user. Sadly, despite the various attempts, to the best of knowledge, no existing mechanism can satisfy all three properties in all situations. Since the TFM departs from classical mechanism design in modeling and assumptions, to date, our understanding of the design space is relatively little. In this paper, we further unravel the mathematical structure of transaction fee mechanism design by proving the following results: - Can we have a dream TFM? - Rethinking the incentive compatibility notions. - Do the new design elements make a difference?


翻译:在Bitcoin和Etheum等链条中,用户在交易费拍卖中竞争,争取在下块中确认其交易。最近一行的工程为“梦想”交易费机制(TFM)设定了一种分层,并探索了这种机制是否存在。梦想的TFM应该满足1个用户激励兼容性(UIC),即真实的投标应该是用户的主要战略;2 矿工激励兼容性(MIC),即矿工的主要战略是忠实地执行规定的机制;以及 3 矿工的用户合同方证明(SCP),即采矿工和一个或多个用户的联盟没有能够通过偏离诚实的行为来增加它们的联合效用。SCP的最弱的形式被称为1-SCP,我们只打算针对矿工和单一用户的串通提供抗御能力。可悲的是,尽管有各种尝试,但现有的机制无法满足所有三种情况。由于TFM在模型设计和假设方面脱离经典机制的设计,因此我们从模型和假设中可以增加联合性。DO最弱的形式就是我们设计一个稳定的设计工具。

0
下载
关闭预览

相关内容

计算机程序设计科学致力于软件系统开发、使用和维护领域的研究成果的分发,包括硬件设计的软件方面。 该杂志具有广泛的范围,从方法论基础的许多方面到技术问题的细节和工业实践的各个方面。 官网链接: http://dblp.uni-trier.de/db/journals/scp/
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员