We consider linear dynamical systems under floating-point rounding. In these systems, a matrix is repeatedly applied to a vector, but the numbers are rounded into floating-point representation after each step (i.e., stored as a fixed-precision mantissa and an exponent). The approach more faithfully models realistic implementations of linear loops, compared to the exact arbitrary-precision setting often employed in the study of linear dynamical systems. Our results are twofold: We show that for non-negative matrices there is a special structure to the sequence of vectors generated by the system: the mantissas are periodic and the exponents grow linearly. We leverage this to show decidability of $\omega$-regular temporal model checking against semialgebraic predicates. This contrasts with the unrounded setting, where even the non-negative case encompasses the long-standing open Skolem and positivity problems. On the other hand, when negative numbers are allowed in the matrix, we show that the reachability problem is undecidable by encoding a two-counter machine. Again, this is in contrast to the unrounded setting where point-to-point reachability is known to be decidable in polynomial time.
翻译:我们把线性动态系统视为浮点四舍五入的线性动态系统。 在这些系统中,反复对矢量使用矩阵,但数字在每步后四舍五入为浮点表示(即,以固定精度封存为曼蒂萨和缩略图) 。 这种方法比在研究线性动态系统时经常使用的确切任意精确度设置更忠实地模拟线性循环的实施。 我们的结果是双重的: 对于非负基质来说,对系统生成的矢量序列有一个特殊结构: 曼蒂萨是定期的, 指数增长为线性。 我们利用这个方法来显示美元/ omega$- 定期时间模型检查的可降解性, 以对抗半数值的顶峰值。 这与无环形环境相比, 即使在非负基中也包含长期开放的Skoloem 和 假设性问题。 另一方面, 当矩阵中允许负数时, 我们发现, 达标问题无法通过对两个计数机器进行编码而线性增长。 我们利用这个模型来显示, 美元/ 定期进行定期检查, 定期检查, 与不折线性点是非 。