In this work, the authors develop regression approaches based on deep learning to perform thread density estimation for plain weave canvas analysis. Previous approaches were based on Fourier analysis, which is quite robust for some scenarios but fails in some others, in machine learning tools, that involve pre-labeling of the painting at hand, or the segmentation of thread crossing points, that provides good estimations in all scenarios with no need of pre-labeling. The segmentation approach is time-consuming as the estimation of the densities is performed after locating the crossing points. In this novel proposal, we avoid this step by computing the density of threads directly from the image with a regression deep learning model. We also incorporate some improvements in the initial preprocessing of the input image with an impact on the final error. Several models are proposed and analyzed to retain the best one. Furthermore, we further reduce the density estimation error by introducing a semi-supervised approach. The performance of our novel algorithm is analyzed with works by Ribera, Vel\'azquez, and Poussin where we compare our results to the ones of previous approaches. Finally, the method is put into practice to support the change of authorship or a masterpiece at the Museo del Prado.


翻译:在本研究中,作者们开发了基于深度学习的回归方法,用于实现平纹画布分析中的线密度估计。先前的方法基于傅里叶分析,对于某些场景非常鲁棒,但在其他一些场景中失败,在机器学习工具中,涉及到对所涉及的绘画进行预标记或交叉点分割,该方法在所有场景中都提供了良好的估计,不需要预标记。交叉点分割方法耗时,因为根据位置确定交叉点后才进行密度估计。在这个新颖的提议中,我们通过使用回归深度学习模型直接从图像计算线密度来避免此步骤。我们还引入了一些改进的初步预处理,对最终误差产生影响。提出了几个模型并进行分析以保留最佳模型。此外,我们还通过引入半监督方法进一步降低了密度估计误差。我们分析了我们的新算法在 Ribera、Vel\'azquez 和 Poussin 的作品中的性能,其中我们将我们的结果与以前的方法进行了比较。最后,该方法被用于支持普拉多博物馆大师作品的作者更换。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
49+阅读 · 2021年5月9日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员