In the paper we define three new complexity classes for Turing Machine undecidable problems inspired by the famous Cook/Levin's NP-complete complexity class for intractable problems. These are U-complete (Universal complete), D-complete (Diagonalization complete) and H-complete (Hypercomputation complete) classes. In the paper, in the spirit of Cook/Levin/Karp, we started the population process of these new classes assigning several undecidable problems to them. We justify that some super-Turing models of computation, i.e., models going beyond Turing machines, are tremendously expressive and they allow to accept arbitrary languages over a given alphabet including those undecidable ones. We prove also that one of such super-Turing models of computation - the \$-Calculus, designed as a tool for automatic problem solving and automatic programming, has also such tremendous expressiveness. We investigate also completeness of cost metrics and meta-search algorithms in \$-calculus.


翻译:在论文中,我们定义了由著名的库克/列文的NP-完整的复杂问题类别引发的图灵机器难以辨别的问题的三个新的复杂类别。这些类别是U-完整(通用完整)、D-完整(成分完整)和H-完整(完成人工合成)类。在论文中,我们本着库克/列文/卡尔普的精神,开始了这些新类别的人口过程,给它们分配了几个无法辨别的问题。我们证明,一些超高级计算模型,即超越图灵机器的模型,非常明确,它们允许在特定字母(包括不可计数的字母)上接受任意语言。我们还证明,这种超级预测模型之一—— $- 计算模型,是自动解决问题和自动编程的工具,也具有如此巨大的明确性。我们还调查了成本计量和元研究算法在 $- culus 中的完整性。</s>

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月25日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
16+阅读 · 2020年5月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员