Optical coherence tomography angiography (OCTA) is a novel non-invasive imaging modality that allows micron-level resolution to visualize the retinal microvasculature. The retinal vessel segmentation in OCTA images is still an open problem, and especially the thin and dense structure of the capillary plexus is an important challenge of this problem. In this work, we propose a novel image magnification network (IMN) for vessel segmentation in OCTA images. Contrary to the U-Net structure with a down-sampling encoder and up-sampling decoder, the proposed IMN adopts the design of up-sampling encoding and then down-sampling decoding. This design is to capture more image details and reduce the omission of thin-and-small structures. The experimental results on three open OCTA datasets show that the proposed IMN with an average dice score of 90.2% achieves the best performance in vessel segmentation of OCTA images. Besides, we also demonstrate the superior performance of IMN in cross-field image vessel segmentation and vessel skeleton extraction.
翻译:光学成像摄影成像仪(OCTA)是一种新型的非侵入性成像模式,它使微分辨率分辨率能够直观视视视视网膜微血管。OCTA图像中的视网膜容器分解仍是一个尚未解决的问题,特别是毛细的薄和稠密结构是这一问题的一个重要挑战。在这项工作中,我们提议为OCTA图像中的船舶分解建立一个新型图像放大网络(IMN)。与U-Net结构相反,该结构采用下取样编码和上层取样分解器,拟议的IMN采用上层采样编码的设计,然后下层采样解码。这一设计是为了捕捉更多的图像细节,减少薄小结构的遗漏。OCTA三个开放式数据集的实验结果显示,拟议的IMN平均dice分为90.2%,实现了OCTA图像的船舶分解最佳性能。此外,我们还展示了IMN在跨场图像容器分解和骨质提取容器中的高级性能。