Despite the recent success of single image-based 3D human pose and shape estimation methods, recovering temporally consistent and smooth 3D human motion from a video is still challenging. Several video-based methods have been proposed; however, they fail to resolve the single image-based methods' temporal inconsistency issue due to a strong dependency on a static feature of the current frame. In this regard, we present a temporally consistent mesh recovery system (TCMR). It effectively focuses on the past and future frames' temporal information without being dominated by the current static feature. Our TCMR significantly outperforms previous video-based methods in temporal consistency with better per-frame 3D pose and shape accuracy. We also release the codes. For the demo video, see https://youtu.be/WB3nTnSQDII. For the codes, see https://github.com/hongsukchoi/TCMR_RELEASE.


翻译:尽管基于图像的3D人类外形和形状估算方法最近取得了成功,但从视频中恢复的时间一致和平稳的3D人类运动仍具有挑战性。提出了几种基于视频的方法;然而,由于高度依赖当前框架的静态特征,这些方法未能解决单一基于图像的方法的时间不一致问题。在这方面,我们提出了一个具有时间一致性的网状回收系统(TCMR),它有效地侧重于过去和未来框架的时间信息,而不受当前静态特征的支配。我们的TCMR大大优于以往的基于视频的方法,以更好的3D框架的外形和形状准确性。我们还发布了代码。演示视频见https://youtu.be/WB3nTnSQDII。关于代码,见https://github.com/hongsukchoi/TCMR_RELESE。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
Arxiv
0+阅读 · 2021年6月14日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
Top
微信扫码咨询专知VIP会员