We present a novel approach aimed at high-performance uncertainty quantification for time-dependent problems governed by partial differential equations. In particular, we consider input uncertainties described by a Karhunen-Loeeve expansion and compute statistics of high-dimensional quantities-of-interest, such as the cardiac activation potential. Our methodology relies on a close integration of multilevel Monte Carlo methods, parallel iterative solvers, and a space-time discretization. This combination allows for space-time adaptivity, time-changing domains, and to take advantage of past samples to initialize the space-time solution. The resulting sequence of problems is distributed using a multilevel parallelization strategy, allocating batches of samples having different sizes to a different number of processors. We assess the performance of the proposed framework by showing in detail its application to the solution of nonlinear equations arising from cardiac electrophysiology. Specifically, we study the effect of spatially-correlated perturbations of the heart fibers conductivities on the mean and variance of the resulting activation map. As shown by the experiments, the theoretical rates of convergence of multilevel Monte Carlo are achieved. Moreover, the total computational work for a prescribed accuracy is reduced by an order of magnitude with respect to standard Monte Carlo methods.


翻译:我们提出了一种新颖的方法,旨在对部分差异方程式所制约的、时间依赖时间的问题进行高性能不确定性量化,特别是,我们考虑了Karhunen-Loeeve扩展和计算高维利益数量统计(如心脏激活潜能)所描述的投入不确定性,我们的方法依靠的是将多层次的蒙特卡洛方法、平行迭接求解答器和时空分解方法紧密结合,这种结合可以允许空间时间适应性、时间变化域,并利用过去的样本来启动时空解决方案。由此产生的问题序列采用多级平行战略进行分配,将不同尺寸的样本分到不同数量的处理器。我们评估拟议框架的绩效,详细展示其对由心电物理学产生的非线性方程式解决方案的应用情况。具体地说,我们研究心脏纤维的与空间变化性扰动对启动图的平均值和差异的影响。实验表明,多层次蒙特卡洛的合并理论速度是按不同处理器数量分配的。此外,我们通过详细显示拟议框架在对心脏电物理学产生的非线性方程式解决方案的应用情况。我们研究了与计算方法的总体精确度要求的计算方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月27日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员