Binary search trees (BSTs) are one of the most basic and widely used data structures. The best static tree for serving a sequence of queries (searches) can be computed by dynamic programming. In contrast, when the BSTs are allowed to be dynamic (i.e. change by rotations between searches), we still do not know how to compute the optimal algorithm (OPT) for a given sequence. One of the candidate algorithms whose serving cost is suspected to be optimal up-to a (multiplicative) constant factor is known by the name Greedy Future (GF). In an equivalent geometric way of representing queries on BSTs, GF is in fact equivalent to another algorithm called Geometric Greedy (GG). Most of the results on GF are obtained using the geometric model and the study of GG. Despite this intensive recent fruitful research, the best lower bound we have on the competitive ratio of GF is $\frac{4}{3}$. Furthermore, it has been conjectured that the additive gap between the cost of GF and OPT is only linear in the number of queries. In this paper we prove a lower bound of $2$ on the competitive ratio of GF, and we prove that the additive gap between the cost of GF and OPT can be $\Omega(m \cdot \log\log n)$ where $n$ is the number of items in the tree and $m$ is the number of queries.


翻译:Binary 搜索树( BST) 是最基本和广泛使用的数据结构之一。 用于一系列查询( 搜索) 的最佳静态树( 搜索) 可以通过动态编程来计算。 相反, 当允许 BST 动态化时( 由搜索之间轮换改变), 我们仍不知道如何计算特定序列的最佳算法( OPT ) 。 其中一种候选算法, 其服务成本被怀疑是最佳的上至( 倍增) 美元不变因素之一 。 在代表 BST 查询的同等几何方法中, GF 等同于另一个称为 Geology 的算法( GG ) 。 大部分 GF 的结果是使用几何模型和 GG 研究获得的。 尽管最近进行了深入细致的研究,但我们对GF 竞争比率的最大低约束是 $forc { {4} n3美元。 此外, 人们还推测GFF 和 AL 之间的加 差值差距在 $ $ 美元 的查询次数中是线性 。</s>

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
0+阅读 · 2023年4月24日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员