The body of research on classification of solar panel arrays from aerial imagery is increasing, yet there are still not many public benchmark datasets. This paper introduces two novel benchmark datasets for classifying and localizing solar panel arrays in Denmark: A human annotated dataset for classification and segmentation, as well as a classification dataset acquired using self-reported data from the Danish national building registry. We explore the performance of prior works on the new benchmark dataset, and present results after fine-tuning models using a similar approach as recent works. Furthermore, we train models of newer architectures and provide benchmark baselines to our datasets in several scenarios. We believe the release of these datasets may improve future research in both local and global geospatial domains for identifying and mapping of solar panel arrays from aerial imagery. The data is accessible at https://osf.io/aj539/.
翻译:关于航空图像产生的太阳电池板阵列分类的研究正在增加,但公共基准数据集仍然不多。本文介绍了丹麦太阳电池板阵列分类和本地化的两个新的基准数据集:用于分类和分区的附加说明的人类数据集,以及利用丹麦国家建筑登记册自报数据获得的分类数据集。我们探索了新基准数据集先前工作的业绩,并采用与最近工作类似的方法,在微调模型后提出了结果。此外,我们还培训了新结构模型,并在几种假设中为我们数据集提供了基准基线。我们认为,这些数据集的发布可以改进今后在地方和全球地理空间领域的研究,以便从空中图像中识别和绘制太阳电池板阵列。这些数据可在https://osf.io/aj539查阅。