Federated learning is an emerging privacy-preserving AI technique where clients (i.e., organisations or devices) train models locally and formulate a global model based on the local model updates without transferring local data externally. However, federated learning systems struggle to achieve trustworthiness and embody responsible AI principles. In particular, federated learning systems face accountability and fairness challenges due to multi-stakeholder involvement and heterogeneity in client data distribution. To enhance the accountability and fairness of federated learning systems, we present a blockchain-based trustworthy federated learning architecture. We first design a smart contract-based data-model provenance registry to enable accountability. Additionally, we propose a weighted fair data sampler algorithm to enhance fairness in training data. We evaluate the proposed approach using a COVID-19 X-ray detection use case. The evaluation results show that the approach is feasible to enable accountability and improve fairness. The proposed algorithm can achieve better performance than the default federated learning setting in terms of the model's generalisation and accuracy.
翻译:联邦学习是一种新兴的隐私保护AI技术,客户(即组织或装置)在当地培训模型,并根据地方模型更新制定全球模型,而不对外转让当地数据;然而,联邦学习系统竭力争取获得信任并体现负责任的AI原则;特别是,联邦学习系统由于多方利益攸关方的参与和客户数据分配的异质性而面临问责制和公平性挑战;为了加强联邦学习系统的问责制和公平性,我们提出了一个基于街区链的可靠联合学习结构。我们首先设计了一个基于合同的智能数据模型出处登记册,以便能够进行问责。此外,我们提出一个加权公平的数据抽样算法,以提高培训数据的公平性。我们利用COVID-19 X光探测案例评估拟议方法。评价结果表明,该方法对于促进问责和提高公平性是可行的。拟议的算法可以比在模式的普及和准确性方面默认的联邦学习设置取得更好的业绩。