The aim of this work was to predict the probability of the spread of rock formations with hydrocarbon-collecting properties in the studied coastal area using a stack of machine learning algorithms and data augmentation and modification methods. This research develops the direction of machine learning where training is conducted on well data and spatial attributes. Methods for overcoming the limitations of this direction are shown, two methods - augmentation and modification of the well data sample: Spindle and Revers-Calibration. Considering the difficulties for seismic data interpretation in coastal area conditions, the proposed approach is a tool which is able to work with the whole totality of geological and geophysical data, extract the knowledge from 159-dimensional space spatial attributes and make facies spreading prediction with acceptable quality - F1 measure for reservoir class 0.798 on average for evaluation of "drilling" results of different geological conditions. It was shown that consistent application of the proposed augmentation methods in the implemented technology stack improves the quality of reservoir prediction by a factor of 1.56 relative to the original dataset.
翻译:这项工作的目的是利用一系列机器学习算法以及数据增强和修改方法,预测在研究的沿海地区碳氢化合物收集特性的岩层形成在碳氢化合物收集特性扩散的概率,这项研究为在良好数据和空间属性方面开展培训的机器学习提供了方向;展示了克服这一方向局限性的方法:两种方法 -- -- 油井样本的扩大和修改:Spindle和Revers-校正;考虑到沿海地区地震数据解释方面的困难,拟议方法是一种工具,它能够与整个地质和地球物理数据合作,提取159维空间空间空间特征的知识,并显示以可接受的质量传播预测 -- -- F1级水库平均为0.798级,用于评估不同地质条件的“钻探”结果;显示,在应用的技术堆中持续应用拟议的增强方法,使储量预测质量比原始数据集提高1.56倍。