This study explores the impact of adversarial perturbations on Convolutional Neural Networks (CNNs) with the aim of enhancing the understanding of their underlying mechanisms. Despite numerous defense methods proposed in the literature, there is still an incomplete understanding of this phenomenon. Instead of treating the entire model as vulnerable, we propose that specific feature maps learned during training contribute to the overall vulnerability. To investigate how the hidden representations learned by a CNN affect its vulnerability, we introduce the Adversarial Intervention framework. Experiments were conducted on models trained on three well-known computer vision datasets, subjecting them to attacks of different nature. Our focus centers on the effects that adversarial perturbations to a model's initial layer have on the overall behavior of the model. Empirical results revealed compelling insights: a) perturbing selected channel combinations in shallow layers causes significant disruptions; b) the channel combinations most responsible for the disruptions are common among different types of attacks; c) despite shared vulnerable combinations of channels, different attacks affect hidden representations with varying magnitudes; d) there exists a positive correlation between a kernel's magnitude and its vulnerability. In conclusion, this work introduces a novel framework to study the vulnerability of a CNN model to adversarial perturbations, revealing insights that contribute to a deeper understanding of the phenomenon. The identified properties pave the way for the development of efficient ad-hoc defense mechanisms in future applications.
翻译:暂无翻译