This paper aims to formulate the problem of estimating the optimal baseline values for the Shapley value in game theory. The Shapley value measures the attribution of each input variable of a complex model, which is computed as the marginal benefit from the presence of this variable w.r.t.its absence under different contexts. To this end, people usually set the input variable to its baseline value to represent the absence of this variable (i.e.the no-signal state of this variable). Previous studies usually determine the baseline values in an empirical manner, which hurts the trustworthiness of the Shapley value. In this paper, we revisit the feature representation of a deep model from the perspective of game theory, and define the multi-variate interaction patterns of input variables to define the no-signal state of an input variable. Based on the multi-variate interaction, we learn the optimal baseline value of each input variable. Experimental results have demonstrated the effectiveness of our method.
翻译:本文旨在为游戏理论中色素值估计最佳基线值的问题。 沙普利值测量复杂模型中每个输入变量的属性, 复杂模型中的每个输入变量的属性是作为该变量存在在不同背景下不存在的边际利益计算的。 为此, 人们通常将输入变量设定为基准值, 以代表没有该变量( 即该变量的无信号状态) 。 以前的研究通常以经验方式确定基准值, 这会损害沙普利值的可信度。 在本文件中, 我们从游戏理论的角度重新审视深层模型的特征表达, 并定义输入变量的多变量多变量的多变量互动模式, 以定义输入变量的无信号状态。 基于多变量的相互作用, 我们学习了每个输入变量的最佳基线值。 实验结果证明了我们的方法的有效性 。