Catastrophic forgetting is one of the major challenges on the road for continual learning systems, which are presented with an on-line stream of tasks. The field has attracted considerable interest and a diverse set of methods have been presented for overcoming this challenge. Learning without Forgetting (LwF) is one of the earliest and most frequently cited methods. It has the advantages of not requiring the storage of samples from the previous tasks, of implementation simplicity, and of being well-grounded by relying on knowledge distillation. However, the prevailing view is that while it shows a relatively small amount of forgetting when only two tasks are introduced, it fails to scale to long sequences of tasks. This paper challenges this view, by showing that using the right architecture along with a standard set of augmentations, the results obtained by LwF surpass the latest algorithms for task incremental scenario. This improved performance is demonstrated by an extensive set of experiments over CIFAR-100 and Tiny-ImageNet, where it is also shown that other methods cannot benefit as much from similar improvements.


翻译:连续学习系统道路上的主要挑战之一是灾难性的忘却,而这种系统是在线的任务流。这个领域吸引了相当大的兴趣,为克服这一挑战提出了各种各样的方法。不忘(LwF)的学习是最早和最经常引用的方法之一。它的好处是,不要求储存以前任务的样本,不要求执行的简单,也不要求依靠知识的蒸馏而有良好的基础。但是,普遍的看法是,虽然它显示在只引入两项任务时,忘记的数量相对较少,但却没有达到任务的长期顺序。本文挑战了这一观点,表明使用正确的结构以及一套标准的扩大,LwF取得的结果超过了任务递增情景的最新算法。通过对CIFAR-100和Tiny-ImageNet的广泛试验,也表明其他方法无法从类似的改进中获益。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
14+阅读 · 2021年7月20日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
6+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员